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Abstract-A line-spring finite element model is developed to resolve fully plastic, quasi-steady,
through-thickness crack growth in plane strain single-edge··cracked (SEC) specimens and surface
cracked plate/shell structures. The plane strain sliding-off and cracking model of McClintock et al.
(1995) is adopted to obtain the instantaneous crack-tip opening angle (CTOA) in terms of material
parameters and the instantaneous slip-line angle and stress triaxiality at the crack-tip. The slip-line
angle and crack-tip stress triaxiality are calculated approximately using the least upper bound
method of Kim et al. (l996a). Utilizing these approaches, the generalized forces transmitted by the
line-spring finite element provide the constraint-dependent CTOA. The increment ofcrack extension
is then determined from the kinematic relation with incremental crack-tip opening displacement
through CTOA. Detailed description of the model, as incorporated into the ABAQUS (1993) finite
element code in the form of a user-defined element, is given in Part I. Parametric studies in plane
strain SEC specimens are carried out to examine the effects of loading type, ductility and strain
hardening on plane strain crack extension behavior, and the effects of elastic surroundings on
structural stability. Applications of the line-spring model to problems of surface-cracked plate and
pipe are presented in Part II (Lee and Parks, 1998). «') 1998 Elsevier Science Ltd. All rights reserved.

I. 1NTRODUCTION

The line-spring model was devised by Rice and Levy (1972) to provide an effective evalu
ation of the stress intensity factors (K[) in part-through surface-cracked plates and shells.
The concept was extended to elastic-plastic stationary crack analyses in the incremental
theory of plasticity by Rice (1972a) and Parks and co-workers (Parks, 1981; Parks and
White, 1982; White et al., 1983; Lee and Parks, 1995). The most attractive feature of the
line-spring model to be exploited here is that it does not require any remeshing for a
simulation of arbitrary crack growth in the thickness direction. A crack-growth line-spring
model based on the i-integral was attempted by Miyoshi et al. (1986) using deformation
theory of plasticity. However, a i-based fracture is limited to amounts of crack growth
small in comparison to initial ligament size (Hutchinson and Paris, 1979).

The materials commonly used in reactor piping are normally very tough and ductile.
Under such circumstances, the initiation of crack growth is often preceded by fully plastic
yielding of the uncracked ligament section, and some: amount of stable crack growth can
often be tolerated before fracture instability. Such (stable) fully plastic tearing is also of
interest in design of transportation structures against overloads due to earthquakes, col
lisions and ship groundings (McClintock et al., 1995). Under small-scale yielding conditions,
the stress intensity factor (alone) characterizes the onset of brittle fracture, including even
small amounts of crack growth, without regard to any detailed information on microscopic
fracture mechanisms. As a comparable extension of this single parameter approach to
large-scale yielding, the idea of i-controlled crack growth as proposed by Hutchinson and
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Paris (1979) may come into mind. But the deformation theory of plasticity on which the J
integral is based is an adequate model of an elastic-plastic work-hardening only when the
loading is nearly proportional. Therefore, problems involving large amounts of fully-plastic
stable crack growth and unloading need to be approached with more physically sound and
robust models.

Ductile crack extension is a consequence of large plastic flow causing voids to grow
and coalesce; it is not due to high crack-tip stresses causing direct separation of atomic
bonds as in ideally brittle materials. Crack-tip opening displacement (CTOD), and crack
tip opening angle (CTOA) are generally considered as feasible crack-tip descriptors of such
strain-dominated fracture process, because they can connect the local micromechanism of
crack extension to geometry-dependent stress and plastic flow. In tensile loading exper
iments on a plane strain double-edge cracked specimen (McClintock, 1969), and on a
center-cracked plate (Gibson and Druce, 1987), the CTOA was observed to evolve during
fully plastic crack growth. The changing CTOA in fully plastic crack growth is believed to
result from the varying crack-tip stress triaxiality and damage accumulation ahead of the
growing crack. Hancock et al. (1993) correlated geometry-dependence of plane strain
ductile crack extension with crack-tip constraint in tests of a series of cracked specimens,
including edge-cracked bend bars, compact tension specimens and center-cracked panels.

By virtue of their sliding-off and cracking model for a rigid/plastic nonhardening solid,
McClintock et al. (1995) represented the CTOA in terms of material parameters, and the
crack-tip slip-line angle and stress triaxiality. With this view, CTOA is a material-dependent
function of the stress and deformation imposed on a growing crack-tip region. In concert
with this notion, Kim et al. (1996a) provided approximate closed-form expressions for the
slip-line angle and triaxiality at the crack-tip of a fully plastic deeply-cracked single-edge
crack (SEC) specimen as functions of far-field tension and bending loads. When the latter
two approaches are suitably combined, the constraint-dependent CTOA in a fully plastic
deeply-cracked SEC specimen can be obtained from the remotely applied force and bending
moment. The increment ofcrack extension is in turn determined from the kinematic relation
with incremental CTOD through CTOA. Provided that the kinematic relationship between
the CTOD-increment and increments of generalized load-point displacements is given, the
plane strain crack propagation can eventually be monitored from the history of generalized
load-point displacements.

In this work, following the lines of the above argument, we develop an advanced line
spring model for fully plastic quasi-steady crack growth of plane strain SEC specimens,
and surface cracked plate/pipe structures. First, the meso-mechanics of estimating CTOA
from the recently proposed sliding-off and cracking model is addressed, and the least upper
bound method for determining crack-tip slip angle and stress triaxiality is briefly reviewed.
Detailed description of line-spring constitutive relations for fully plastic crack growth is
given here in Part I. The model has been incorporated into the implicit ABAQUS finite
element code (1993) in the form of a user-defined element. The plane strain SEC specimen
has attracted attention in connection with fracture toughness testing and as a cornerstone
of the line-spring model. We thus carry out parametric studies in plane strain SEC specimens
to examine the effects of loading type, initial relative crack length, ductility, flow strength
(relative to modulus), and strain hardening on plane strain crack extension behavior, and
the effects ofelastic surroundings on structural stability. Pipes with complete circumferential
cracks under uniaxial tension are studied as other 2-D problems. We then discuss the
nonlinearity due to contained yielding, and instability of a plane strain SEC specimen under
pure tension/bending. In Part II (Lee and Parks, 1998), the model is applied to surface
crack growth problems in plates and pipes, characterized by widely varying crack-front
constraint.

2. CRACK GROWTH CRITERIA

2.1. Limitations ofasymptotic solutions
For more than two decades, concerted efforts have been made to establish fracture

criteria for plane strain stable crack growth. Rice and Sorensen (1978) and Drugan et al.
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(1982), and Drugan and Chen (1989) constructed asymptotic solutions for a crack growing
in an elastic/perfectly-plastic solid under Mode I plane strain loading conditions. The
solutions are effective in small-scale yielding, but are not uniquely connected to loadings in
large-scale yielding. Corresponding works for linear strain hardening material were pre
sented by Amazigo and Hutchinson (1977), and Ponte Castaneda (1987). However, under
many circumstances (especially, lower strength materials) the dominant regions of the
above asymptotic solutions were shown to be much smaller than the fracture process zone
(Gudmundson, 1989; McClintock et al., 1995). For example, when a crack advances
steadily in elastic/perfectly-plastic material under plane strain mode I loading, a radius of
dominance rd of the asymptotic solution is given as rd ~ 0.2rp exp(-Gt!cy). Here, cy is the
tensile yield strain, c1fracture strain and rp plastic zone size. For low strength steels, with a
typical value of By ~ 0.002, and even taking Cl as low as 0.05 under the assumption of high
crack-tip stress triaxiality, and with a value of rp as large as 100 mm under the assumption
of fully plastic yielding of a test specimen, it is found that rd ~ 1.44 x 10- 5 .urn. This value
is of course much smaller than the size and spacing of the void nucleation sites responsible
for ductile fracture in structural metals. Consequently, these asymptotic elastic-plastic
solutions for growing cracks can hardly be applied to low strength ductile alloys, even for
high crack-tip stress triaxialities. Detailed discussions on the limitations and applicability
of existing asymptotic elastic-plastic solutions can be found in the works of Gudmundson
(1989) and McClintock et al. (1995). This exercise motivates us to adopt the following
rigid/plastic sliding-off and cracking model into our fully plastic crack growth line-spring
formulation.

2.2. Sliding-offand cracking model
Ductile fracture in pre-cracked specimens consists of initial, transient and steady

growth. The first two stages feature crack-tip blunting and sharp strain gradients. When
concern is focused on quasi-steady crack growth, the CTOA results from the interaction of
near-tip stress, deformation and damage fields with the local fracture micromechanisms. In
a high ductility material, such as low-to-medium strength steels, fully plastic ductile fracture
by hole growth can be regarded as rigid-plastic, since the magnitude of elastic strain is
negligible compared to that of the plastic strain, at both the microscopic and plastic
ligament size scales. For fully plastic, plane strain, quasi-steady crack growth in rigid/plastic
nonhardening material, McClintock et al. (1995) considered, as shown in Fig. I, the crack
growth relative to the shoulders as the result of sliding on first the upper and then the lower
slip planes, followed by cracking. The (kinematic) shear strain I'k in the advancing shear
band is the slip displacement Au, per unit distance, where the distance can be found by
projecting Au, and Aa onto the normal to the slip line;; :
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Fig. I. Stages in sliding-off and cracking for fully plastic, plane strain, quasi-steady crack growth in
rigid/plastic nonhardening material (McClintock el al.. 1995).
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'/k = L1us sin(n - 2e,) + (L1a - L1u, cos eJ sin es •
(1)

Inserting the kinematic relation L1a •tan(CTOA(2) = L1u, sin 0, into egn (1) then gives the
CTOA in terms of slip angle es and shear strain Yk as

(
CTOA) tan e,

tan -2- = 2/(Yk sin2eJ-l . (2)

The fracture strain (j, which is a limiting value of the shear strain Yk at fracture, depends
on the mean normal stress at the crack-tip, (J" and on material properties. Accounting for
hole nucleation and growth in a shear band, McClintock et al. (1995) suggested a semi
empirical functional form for Yr as

(1- l(n)A
yf = sinh [(1-1/n)o-Jrol +B«(J,) (3)

where To is the flow strength in shear, and n is the stain hardening exponent [plastic
strain proportional to (stressn. The dimensionless constant A and function B are material
parameters determinable in principle from fully plastic crack growth tests. The first term
on the right hand side of (3) represents a strain for hole growth to linkage by micro-rupture,
and the second term represents a strain for hole nucleation. With a hole growth model in a
shear band, McClintock et al. (1969) related the parameter A to the critical hole growth
ratio at fracture such that A = 2In(Rr/Ro), where Rois the initial hole size and Rf is the hole
size at micro-localization between two grown holes. Note that any functional form of
(r = YrC(J,/To) can be used as long as it gives the essentially inverse exponential dependence
of (/ on high values of (Jbo. By equating fracture strain Yl to the kinematically-determined
strain Yks one can finally obtain the CTOA in terms of e" (Js and material parameters.
Figure 2, obtained by McClintock et al. (1995) from (2)-(3), shows an inverse exponential
dependence of the CTOA on (Jj(2To) when a nonhardening (n = 00 ; To = T,) plane strain
SEC specimen is subject to a flow field with es = 45°. Here, Ty is the yield strength in shear.
In the forthcoming line-spring model, to apply the nonhardening solutions to hardening
cases in an approximate manner, we replace Ty with an evolving "ligament-average" measure
of flow strength, To. On that account, "To" is used instead of "T," in our development, even
for nonhardening cases where they coincide. Typical values of A ranging from 0.2-1.2, in
an increment of 0.2, were plotted, and no nucleation strain was assumed: B«(J,) = O. Also
shown are experimental data from singly-grooved plane strain tensile specimens of 1018
cold-finished steel with (Jj2To = 0.5 (Kardomateas and McClintock, 1989) and from a
doubly-grooved wedge-splitting specimen of 1018 hot-rolled steel with (Jj2To == 2.2
(McClintock and Wineman, 1987), indicating the order of magnitude difference in CTOA
values obtainable under different loadings and corresponding stress triaxialities.

2.3. Least upper bound method
Kim et al. (1996a) found approximate values of the crack-tip slip-line angle, e" and

mean normal stress, (J" in terms of loads applied to a SEC specimen of rigid/plastic
nonhardening material. Consider the left portion of Fig. 3, where three generalized forces
are transmitted across a single circular arc spanning the ligament of a plane strain SEC
specimen. For a given shear S( = 0) and tension N, applying the upper bound theorem to
the circular arc kinematic field on the right of Fig. 3 provides an upper bound to the
bending moment M. Among four kinematic variables (cPls cP2, L, R) subject to two geometric
constraints, cP, and cP2 are selected as independent, and, the upper bound value of Mean
be minimized with respect to both cPt and cP2' Further, assuming that the traction along the
optimized arc satisfies the Hencky equation of equilibrium, and selecting a single parameter
(a reference value of triaxiality on the arc) to equilibrate the prescribed shear (S = 0), they
ultimately obtained closed form expressions for 0, and the crack tip value of normal



Line-spring finite element for fully plastic crack growth--I 5119

(a)
A=1.2 low triaxiality

80

1.0
• experiments

Kardomateas
-.. 60 I!c McClintockQ(J

(]) 0.8 (1989)'"d
'--'

~ 40 0.6 ~'d5'0
Eo-<
U

0.4
20

0.2
~

0
0.0 0.5 1.0 1.5

U s/(2To)

(b) 10

high triaxiality

8 • experiment

McClintock &-..
Wineman (1987)Q(J

(]) 6
'"d
'--'

~ Os 45°
0 4
Eo-<
U

2

-
0

1.5 2.0 Z.5 3.0

O"s/(2To)
Fig. 2. CTOA vs (Jj(2To) for a nonhardening (n = (0) plane strain SEC specimen under pure
extension, 8, = 45°. Typical values of A ranging from 0.2-1.2 in an increment 0.2 were taken. and

no nucleation strain was assumed; B«(JJ = o.

stress as on the shear band, as shown by solid lines in Fig. 4(a) and (b). The parameter
J1. == (M+Na/2)/(Nl) is introduced to measure the remotely applied bending-to-tension
ratio, where (M+Na/2) is the bending moment about the mid-ligament of the SEC speci
men. The value of J1. ranges from zero for mid-ligament tension to infinity for pure (opening)
bending. The modified Green and Hundy (GH) slip-line field (1956), gives constant values
of as = 1.54 0(2ro) and 8s = 72' for J1. ~ 0.6.

Using a small geometry change continuum finite element model composed of an
isotropic elastic/plastic material obeying nonhardening J 2 flow theory, Lee and Parks (1993)
performed limit analyses of a deeply-cracked plane strain SEC specimen. In finite element
limit analyses, the slip angle can be estimated from the distribution of the crack-tip shear
strain Yrrl8) in polar coordinates (r, 8) centered at the crack tip. Applying suitable com
binations of remote displacement and rotation large enough to bring the SEC specimen to
the corresponding limit load state, they obtained values of 8s and as at various J1.-values.
Their nonhardening finite element results are compared with the least upper bound results
in Fig. 4(a) and (b). The estimates from least upper bound method agree very well with
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Fig. 3. Plane strain single-edge cracked specimen subject to combined tension and bending (left).
Slip angle e., and normal stress (J,. across the flow line at the crack tip are also shown. Kinematically
admissible flow field (right) used by Kim et al. (1996a) to generate a least upper bound yield surface,

where i\~ = i\(j" + (t(2 -a)MJP.

finite element limit load solutions over the range of fl. Combining the least upper bound
solutions with eqns (2)-(3) gives the instantaneous CTOA in the fully-plastic deeply
cracked SEC specimen as a function of fl. Figure 5 shows the predicted variation of CTOA
with respect to fl in nonhardening (n = 00) and low hardening (n = 10) plane strain SEC
specimens for the values of A = 0.2-1.2 and B(rrs ) = O.

3. THE LINE-SPRING MODEL

3.1. Preliminaries
The virtue of the line-spring model is that it brings certain complicated 3-D cracked

structures within the realm of plate/shell problems, in the way described below. Consider a
part-through surface crack of total length 2c in a shell of thickness t, as shown schematically
in Fig. 6. The coordinate x measures the distance from the center line (x = 0) of the surface
crack. The local depth of the surface crack is a(x), where 0 ~ a(x) ~ t for Ixl ~ c. The
presence of a part-through surface crack in a shell structure introduces additional
compliance, which is accounted for by a model through-crack of length 2c in the shell, the
faces of which are connected by a generalized spring-foundation. The compliance of the
foundation varies along the cut according to the local crack depth a(x) of the surface crack.
In symmetrically-loaded structures, the spring-foundation transmits a membrane force
N(x) and a bending moment M(x) per unit length. Work-conjugate variables are relative
separation and rotation [15(x), H(x)] of the model through-crack. Construction of the line
spring model is completed by equating the local compliance of the foundation at x to the
additional cracked compliance of a plane strain SEC specimen having the same thickness t
and crack depth a(x) (Rice and Levy, 1972; Rice, I972a) . Thus, the problem is reduced
from 3-D to 2-D by lumping the additional compliance onto the springs distributed along
the line of the cut in a shell. Finally, the crack front deformation parameter at position x
(as measured by K[(x), CTOD(x), etc.) is estimated as the same value which would occur
in the plane strain SEC specimen of thickness t and crack depth a(x) undergoing the
combined load histories [N(x), M(x)].

In the linear elastic domain, the generalized forces and displacements, renamed as
QI = N, Q2 = M; ql = 15, q2 = 0, are connected by the elastic matrix Pi;:
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i

Fig. 6. Cross section of a part-through surface crack with length 2c and varying depth a(x) in a
shell of thickness t (above). Schematic illustration of line-spring model which converts the part

through surface crack to the through-crack with a generalized foundation (below).

(4)

where ao is the original crack length prior to the initiation ofcrack extension. The summation
convention (from I to 2) on repeated subscripts is implied. Before the onset of "initial"
fully plastic yielding, the deformation is assumed to be purely elastic, as denoted by
superscript "(e)". The elastic compliance matrix Pu is determined from the mode I stress
intensity factor calibrations of the SEC specimen using the energy/compliance relation
(Rice, I972b)

2 rao

Pij = E' Jo FMl, t)FPi, t) da (5)

where E' = E/(1 - v2
), E is Young's elastic modulus, and v is Poisson's ratio. The functions

Fi(a, t) (i = 1,2) contain the Krcalibrations of the SEC specimen subject to tension (F l )

and bending (F2) ; that is, Kla, t) = Fi(a, t)Qi by superposition. These calibration functions
are obtained from the handbook, for example, of Tada et al. (1985).

3.2. Yield surfaces
A convex yield function <l>(Qi; a, t; ro) = 0 in the generalized force space is required

for a formulation of fully plastic line-spring based on the flow theory of plasticity. Kim et
al. (1996b) proposed an elliptical yield surface, which automatically satisfies convexity, for
a deeply-cracked SEC specimen as

_ [N/(2ro/)-0.4953J
2

[M+Na/~J2 __
<l>K - 05047 +9.0256 2 1 - 0

. 2rol
(6)

where a is the crack length and I is the remaining ligament (t = a +j). The flow strength in
shear To is related to the flow strength in tension CTo by ro = CTo/V3 according to a Mises
yield criterion. The constants (-0.4953; 0.5047; 9.0256) were obtained by matching the
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Fig. 7. Combined tension and bending yield surfaces in the generalized force space, the coordinates
of which are normalized with the SEC specimen ligament, I and shear flow strength, '0' Circled data
points are from nonhardening FEM limit analyses (Lee and Parks, 1993). Also shown are the
modified Green and Hundy yield surfaces (White et al.. 1983) and the quadratic form by Kim et al.

(l996b).

slopes and values of the elliptical yield locus at N/(2To£) = I and 0.55 with those of the
known slip-line field solutions at these points.

When an opening bending moment, joined by an axial force of a suitably restricted
magnitude, is applied to the SEC specimen, the Green and Hundy (1956) (GH) field for
pure bending can be modified to produce a slip-line field for the combined load state,
Equilibrating the applied force and moment with the resultants of the modified GH slip
line fields, White et al. (1983) obtained the following yield surface:

M N (N)2lDMGH = -0 - -2-/(0,26-a/l) +0.37 -2I' -0.63 = 0,
To/- To To

(7)

For axial forces ranging from N = -2To/-N = 0.55 '(2To/), the yield surface given by eqn
(7) is possibly exact for deep cracks.

The above two yield surfaces apply to deep cracks, where plastic deformation is
confined to the remaining ligament. As discussed by Green (1956) and Ewing (1968), the
slip-line field of shallow cracks under predominant bending spreads to the front surface.
Lee and Parks (1993) constructed an accurate set of tabulated yield surfaces of plane strain
SEC specimens for various crack depths. From the variation of yield surface shape with
respect to the relative crack depth, they suggested that deep cracks might be classified as
those having relative crack depth aft greater than about 0.35. Figure 7 shows the deep
crack yield surfaces plotted in a generalized force space, the coordinates of which are
normalized with the shear flow strength To and the ligament I of the SEC specimen. The
quantity (M+Na/2) is the moment measured about the mid-ligament of the SEC specimen.
Data from continuum finite element limit analyses (Lee and Parks, 1993) are exhibited by
the cross symbol, circle and square for aft = 0.4, 0.5 and 0.6, respectively. Modified GH
solutions and numerically-obtained data show excellent agreement for
-1 ~ N/(2To£) ~ 0.55. In its intended range of applicability, namely 0.55 ~ N/(2To£) ~ I,
the approximate yield locus (6) is within 2% of the numerically-obtained yield surfaces.
Therefore, the combination of (6) and (7) affords a complete and explicit set of yield
functions for a broad range of loading applied to a deeply-cracked plane strain SEC
specimen,

3.3. Elastic-plastic crack-growth line-spring
In the following formulation of a fully-plastic crack-growth line-spring model, we

assume an isotropic hardening in which the yield surface expands due to hardening, and
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contracts due to crack growth, into the adjacent concentric locus without changing shape.
A work-hardened yield surface <1>(Q;; a, t; oro) = 0 will be called simply the "yield surface",
while the yield surface <1>(Q;; a, t ; ry ) = 0 defined on the shear yield strength -ry is termed by
the "initial" yield surface.

The generalized forces are represented in terms of the elastic stiffness matrix and the
elastic generalized displacements:

(8)

where the elastic stiffness matrix S;/(a, t) == Pi! I (a, t) is evaluated based on the current crack
length a. The total generalized displacement increments !1q; are additively decomposed into
an elastic and a plastic part: !1q; = !1q~e) + !1q~P). The plastic generalized displacement
increments under active plastic loading are taken as the product of a nonnegative scalar,
A, and the yield surface normal,

8<1>
!1qlP) = A<1>· = A~

1 .1 -- 8Qi' (9)

Here the nonnegative scalar A depends on the load increments, gross work-hardening and
the amount of crack extension. The consistency condition that the force state remains on
the yield surface during plastic flow gives

<1>(Q;; a, t; ro) = o.

The crack length a at the end of a time increment can be expressed as

(10)

(11)

where the superscript -r denotes the time. Here !1a represents the crack growth increment
across a time-increment!1r = (r + !1r) - r, whereas (!1arot represents the total accumulation
of crack increments-the difference between the current crack length a at r +!1-r and the
original crack length ao at r = O. In a fully-plastic 2-D plane strain crack growth model,
once a crack starts to grow by satisfying certain initiation criteria (and is presumed to enter
a steady stage of crack growth), !1a can be kinematically related to !1b, through the CTOA.
CTOD (= c5,) is taken as the sum of two terms, "linear-elastic" and "plastic" parts:
15, = c5~e) + b~p). Choosing c5, as an initiation criterion, and using the rigid-plastic kinematic
relations among !1a, CTOA and !1b, (McClintock et al., 1995), we may write

!1a = {~W) /[2 tan (CTOA/2)]

if c5, < b~

if 15, ~ 15;
(12)

where 15, is the CTOD at the initial (stationary) crack-tip, and the material fracture property
b~ is the critical CTOD at initiation. Since our interest here lies in fully plastic crack growth,
crack extension associated with !1c5~el( «!1W1) is neglected in (12). The position of a
growing crack-tip changes continuously; thus, !1c5~p) (assumed to be ~ !1c5,) is rather inter
preted as the relative separation, at time -r + !1r, of two crack flank points, which once
formed the crack-tip at time r (Rice, 1975). Note that our crack growth line-spring model
assumes that the crack initiates after initial fully plastic yielding, <1>(Q;; a, t; oro) = 0, as is
often observed in ordinary-sized parts composed of ductile material. Further, Lee and
Parks (1993) provided !1iW) of a fully plastic SEC specimen in the form
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(13)

where alt is the relative crack depth, and 11<5 lp )I(tI1()'p») is the ratio of load-point plastic
displacement increment to plastic rotation increment multiplied by the SEC specimen
thickness, L 2 is a function of (alt) and [11<511') l(tI18IP ))], representing the degree of negative
relative rotation of the crack flank with respect to the far field rotation. Constitutive
relations (8)-(13) are sufficient to describe fully plastic crack growth behavior of the line
spring model within a "nonhardening" idealization.

In case of hardening, the line-spring ligament-average flow strength To and the ligament
average plastic strain I'll) find their connection through the plastic material hardening
modulus hs(yfr)), which is the slope of the stress/plastic strain curve in shear, as

(14)

At the macroscopic level, the plastic work increment per unit thickness of the SEC specimen,
11 WW) is given by

(15)

This plastic work increment can also be expressed by the integral of the continuum plastic
work increment over the area AlP) ofthe SEC specimen where plastic dissipation is occurring,

(16)

Here the quantities rand l1yIP) are local values of equivalent shear stress and equivalent
plastic shear strain increment in the dissipation area AlP). Parks (1981) inferred that the
active plastic deformation area AlP) of the deep crack would be proportional to the square
of a "characteristic length". With the ligament I chosen as the characteristic length, the last
integral (16) can be evaluated approximately, in terms ofro and l1yfr), as

(17)

where the dimensionless scalarf, which we call the strain hardening factor, is expected to be
of order unity. Assuming isotropic hardening, equivalency of macroscopic and continuum
plastic work increments reduces to

(18)

Equations (8)-(14), (18) represent a complete set of constitutive relations for fully plastic,
hardening, crack growth behavior of the line-spring model. In the absence of crack growth
(Lia = 0), the set ofequations exactly recovers the stationary crack model. For the stationary
crack in a low hardening material (n = 10), Lee and Parks (1995) calibrated the value of
strain hardening factor asf = 0.9 by comparing the behavior of a single line-spring to that
of the continuum finite element solution of a plane strain initial boundary value problem
having the same dimensions, material properties, and loading histories. Here, we simply
take f = 0.9 obtained from stationary crack analyses to be use in the applications of crack
growth line-spring model to the nonhardening and low hardening materials.
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4. RESULTS

For unconditional stability in our numerical time integration procedure, we employed
the Euler Backward formulation so that the line-spring constitutive equations are satisfied
at the end of a time increment. At the beginning of a time increment, estimates of !1q; are
presumed known. For given !1q;, we (i) assume !1qlP), and (ii) find the corresponding !1Qj,
!1a, !1ylf') and ra(Ylf') + !1ylf') from (8), (12) and (18) by two-level Newton-Raphson iterations.
Then, (iii) !1qlP) and !1ylf') are corrected [by d(!1qlp») and d(!1ylf'»), respectively] to satisfy the
normality (9) and consistency (10) conditions. Corrected values of the plastic displacement
increments [ = !1qjP) +d(!1qjP)] are substituted for assumed values of !1qjP) in (i) and the
remaining steps (ii) and (iii) are repeated until the corrections d(!1qjP)) are within specified
tolerances, or equivalently, until the implicit constitutive eqns (8)-(14), (18) are satisfied
simultaneously. Subsequently, we find the elastic-plastic Jacobian matrix Tj'jP) == 8Q;/8qj'
which is used for revising the estimates of nodal displacements !1qi in the main body of the
ABAQUS finite element program (1993).

In Part I here, simulating fully plastic crack growth in plane strain SEC specimens, we
examine the effects on crack extension behavior of specimen size and relative crack depth,
loading conditions, and material properties such as material ductility (A-constant of the
model), flow strength (relative to modulus), strain hardening, and critical CTOD at crack
initiation.

Figure 8(a) shows the normalized axial force, N/(2rJa) vs normalized loading-point
total displacement, bIoI/la, of the plane strain SEC specimen with initial relative crack depth
aa/t = 0.5 under pure extension (N) 0, e'lC = 0; e'lC is the rotation at the far-field loading
point). The axial force is normalized by the initial yield strength in shear rV' and initial
ligament length 10 , We selected the total displacement bto' as a parameter in order to study
the effect of specimen length 2L, on the stability of the crack. For all continuum and line
spring finite element input data, we employed a multi-linear stress/strain curve, smoothly
approximating the experimental data for ASTM A710 Grade A steel. In A710 steel, the
strain hardening exponent is near n == 10 and rr,Jrry == 1.35, where rr ll is the tensile strength
occurring at about 8% strain (Reuter and Lloyd, 1990). The critical CTOD value at crack
initiation for this material ranges from b~ = 0.2 to 0.35 mm, depending on track-tip con
straint (Hancock et al., 1993). The initial crack depth, aa/t = 0.5 is deep enough to constrain
plastic deformation to the ligament for all loading conditions (Lee and Parks, 1993). The
values of the material crack ductility parameters A = 0.5 and B(rrJ = 0 correspond to the
critical hole growth ratio RtlRa = 1.32 and fracture strain Yf = 0.44 under crack-tip stress
triaxility rrJ(2ra) = 0.5. Since the grip condition ex = 0 is applied to the far-field loading
point, the line-spring load state (N, M) is not precisely at the vertex point of the yield
surface, characterized by load state N = 2rol and M = - Na/2. The cross symbol indicates
the incipient fully plastic yielding <I>(Qi; a, t; rr) = 0, and the open circle indicates the
initiation of the crack growth. Solid lines were obtained based on the critical CTOD value,
b;/Ia = 0.01 and dashed lines were based on b;/la = 0.02. In this model, the axial force in
pure extension continues to increase after crack initiation, reaching a maximum value soon
afterwards. This reaction force increase comes in part from the drift of the load state
towards the vertex point of the yield surface, and in part from the increase of average flow
stress ro due to the model strain hardening. In short and intermediate length specimens
(Ljt = 3, 10), the value of b; does not significantly affect the overall load-deflection
response. But in the long specimen (LJt = 20), where the reaction force decreases directly
after crack initiation, with first a gradual and then a steep slope, different values of b; cause
a sensible difference between the load-deflection curves. Figure 8(b) shows the normalized
crack depth, aft vs loading-point displacement, b,o'/lo under pure extension. The crack in
the longer specimen grows faster than that in the shorter specimen, and delayed initiation
of crack growth simply shifts the curve to the right, as illustrated by dashed lines. Figure
8(c) compares the line-spring solution with the continuum FEM solution based on the
nodal release technique and the same CTOA criterion (Jung, 1995), for nonhardening
material. To capture the intensive global deformations on ± 45<) slip-lines emanating from
the moving crack-tip in pure extension, the continuum FEM approach used about 3500
plane strain 4-node elements. To the extent (b'OI/fa ~ 0.13) where continuum FEM solution
was obtained, both solutions agree very well. While the line-spring solution required only
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Fig. 8. (a) Normalized axial force N/(2r,1o) vs loading-point total displacement (5""/lo of the plane
strain SEC specimen with initial relative crack depth a"i' = 0.5 under pure extension (N) O.
ex = 0). Solid lines are based on the critical CTOD value (5;/l" = 0.01, and dashed lines based on
(5~/lo = 0.02. (b) Normalized crack a/' vs loading-point total displacement (5t"t!l" under pure exten
sion. (c) Comparison between line-spring solution and continuum finite element solution based on

nodal release techniq ue (1ung, 1995).
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Fig. 9. (a) Normalized axial force vs loading-point total displacement of the plane strain SEC
specimen with initial relative crack depth ao!1 = 0.5 under remote pure tension (N > 0, M = 0). (b)
Relative crack depth a/I vs loading-point total displacement (j'O'!I" under remote pure tension for

various relative specimen lengths.

a few minutes on an HP 9000 workstation, the continuum FEM solution took two orders
of magnitude longer on the same workstation.

Figure 9(a) presents the normalized axial force vs load-point displacement of the plane
strain SEC specimen with initial relative crack depth Golt = 0.5 under remote pure tension
(N) 0, M = 0). Again, the cross symbol indicates the initial fully plastic yielding, and the
open circle indicates the commencement of crack growth. In pure tension, even in short
and intermediate specimens (Ljt = 3, 10), loading decreases immediately after crack
initiation, in contrast to pure extension. In the specimen of LJt = 20, the load-deflection
curve drops almost vertically, which can be viewed as a kind of instability in the static crack
extension. Figure 9(b) reveals that the crack in the long specimen is initially delayed, then
growth per unit loading-point displacement (da/L1c5 101

) becomes larger than that in the short
specimen under pure tension. The vertical load drop and the abrupt crack extension depicted
by the dashed lines based on c5~/t = 0.02 in Fig. lO(a) and (b) illustrate that the retardation
of crack initiation in a long specimen (L)t = 15) can induce the crack to behave unstably.
When the plane strain SEC specimen is loaded in a pure bending mode as shown in Fig.
II (a) and (b), the crack tends to grow more stably.

In Fig. l2(a), normalized axial force vs total loading-point displacement curves of
plane strain SEC specimen having aolt = 0.5, and Ljt = 20 under remote pure tension are
plotted for c5~/lo = 0.01, respectively, and differing material values of A, with B«(JJ = o.
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Fig. 10. (a) Effect ofcritical CTOD value for initiation on the load-deflection curve of SEC specimen
with initial relative crack depth ao/t = 0.5 under remote pure tension. (b) Crack extensions in the
SEC specimen for two different values 0:/10 = 0.01, 0.02 and for two different relative specimen

half-lengths LJt = 3,i,5.

The values A = 1.175 and B = 0 correspond to a hole growth ratio RtlRo = 1.8 and fracture
strain Vj = I for a,/(2,0) = 0.5. When carefully compared with Fig. 9(a), Figure 12(a)
demonstrates that the crack in the same specimen, but composed of more ductile material
with A = 1.175, can be made to grow stably. In Fig. 12(b), effects of tensile yield strength
relative to elastic modulus (a)lE) on the stability of plane strain SEC specimens of non
hardening materials under pure tension are examined, again for o~/lo = 0.01. Cracking in
higher strength material shows more propensity for instability. For material ductilities
A = 0.5 and 0.8, the response of plane strain SEC specimens having Ljt = 20 and three
different initial relative crack depths (aolt = 0.4, 0.5 and 0.6) subjected to remote pure
tension are given in Fig. 13(a) and (b). In the specimen of aolt = 0.6, the crack grows stably
for both materials, whereas in the aolt = 0.5 case, initial cracking is unstable for A = 0.5,
but stable for A = 0.8. Cracks in the specimen of aolt == 0.4 grow unstably for both material
ductilities considered. In brief, the higher fully plastic loads of initially shorter cracks tend
to incline the system to unstable cracking.

Effects of material hardening are examined in Fig. 14(a) and (b) for pure extension
and pure bending, respectively. Under pure extension, the reaction force in hardening
material (n = 10) first increases then decreases, while that in nonhardening material (n = 00)
decreases almost immediately following crack initiation. The reaction moments in pure
bending, however, decrease after crack initiation regardless of material hardening, at least
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Fig. II. (a) Normalized bending moment vs loading-point rotation of a deeply cracked SEC
specimen under pure bending mode. (b) Stable crack extensions in a deeply cracked specimen

regardless of relative specimen lengths, when subject to pure bending.

for the tested cases (n = 00 and n = 10). The reaction moment in pure bending is pro
portional to the square of the ligament length, while the reaction force in pure extension is
proportional to the ligament length itself. It thus seems that in pure bending, the load
reduction due to net ligament decrease more than offsets any load increase due to strain
hardening. The reaction force and moment of SEC specimens with initial relative crack
depths aolt = 0.4 and 0.6 under pure extension (N) 0, W' = 0) are plotted against the
relative crack depth alt in Fig. 15(a) and (b). Once the response of the initially short crack
(aolt = 0.4) gets on the track of the initially deep crack (aolt = 0.6), no effect of initial crack
depth is observed. However, the loci of reaction forces merge at alt ~ 0.64, while the loci
of reaction moments merge at alt ~ 0.68, a bit later.

As another type of "2-D" problem, we study externally part-through, complete cir
cumferential cracks in pipes under remote uniaxial tension. Figure 16(a) shows that in
nonhardening material, the axial forces fall immediately after crack initiation, which points
are marked by open circles. Axial force F is normalize with the mean shell radius Rm , the
initial yield strength in shear 'y, and initial ligament length 10 , For the shell of relative radius
Rmlt = 400, the load vs displacement curve recovers the shape of the plane strain SEC
specimen case of Fig. 8(a). On the other hand, as shown in Fig. J6(b), the reaction force
of hardening material continues to increase even after crack initiation, and reaches a
maximum for the shells of Rmlt = 10, 100, 200. For Rmlt = 400, the hardening curve is
similar to the nonhardening case except for the higher maximum load. It is also observed
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Fig. 12. (a) Normalized axial force vs total loading-point displacement curves of plane strain SEC
specimen having ao/t = 0.5, and L,ft = 20 under remote pur,~ tension for various material values of
A with B((J,) = O. (b) Effects of yield strength on the stabJlity of plane strain SEC specimens of
nonhardening materials under remote pure tension are demonstrated. Higher strength material

shows more propensity for instability.

that the shell of smaller Rm initiates later in hardening material. Figure 16(c) illustrates that
increasing material ductility retards the load leveling··off, thus stabilizing the system. The
negligible influence of shell length on the shape of load-deflection curve in Fig. 16(d)
contrasts with the plane strain case (Rm ----> co) of Fig. 8(a). Thus, the curvature of the shell
(Rmlt = 10) tends to stabilize the system of Ljt = 20 specimen.

5. DISCUSSION

In the results in Fig. 8(a) to Fig. 13(a), nonlinearity due to contained yielding was in
fact captured using a modified effective crack length (Hauf et at., 1995; Lee and Parks,
1995). However, as manifested by the load-deflection curves preceding the" x " symbols,
nonlinearity in <l> < 0 is barely perceptible in the displacement scale of our current interest,
which involves fully plastic crack initiation and extension over a sizable portion of the
initial ligament. Therefore, for purposes of simplification, in Section 3 we left out the
effective crack length formulation (Lee and Parks, 1995), and describe the deformation in
<l> < 0 to be purely elastic; however, including initial nonlinearity due to contained yielding
is straightforward.
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Fig. 13. (a) The responses of plane strain SEC specimens having L,jt = 20 and three different initial
relative crack depths oo/t = 0.4, 0.5 and 0.6 subjected to remote pure tension. (b) Crack extension

stability dependence on the initial relative crack depth oo/t, and material ductility A.

Instability for a plane strain SEC specimen loaded by remote pure tension under
overall displacement control can be analyze as follows. First, the increment of total load
point displacement is given by

d(j'ot = d(j(e.c) +d(j(e.nc1 +d(j(P.c1 +d(j(p.nc)

[
2 fa 2LS]= - F 2 (a t) da+ - dN+d(j(p,c) +0E' I, E't .

o
(19)

Here superscript "(e, c)" denotes the elastic part of the load-point displacement due to the
crack, and "(e, nc)" denotes that part absent the crack. The superscript "p" denotes the
corresponding plastic part of displacement. Using (13) relating d(j(P'c) to dWl and (12)
connecting d(j~pl to da, the last term on the right side of (19) can be expressed as

(CTOA) [ (1 a) (t!!8
IP1 )]-1d(j(p,c) = 2 tan --- . I +L' - - - . - - da

2 - 2 t !!(jw

(CTOA)== 2 tan -2-- . [1 + Dj- Ida. (20)
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for pure ending.

When a nonhardening deeply-cracked SEC specimen undergoing cracking remains at
yield under remote pure tension, the load is N = C l • 2rol, where C l = tl(a/t) can be
determined from the appropriate branch of the yield surface, from (6) or (7), with M = O.
Substituting dN = d(C l ' 2rol) into (19) along with (20), provides

da {2 tan(CTOA/2) 4rOC2 [f" 2 - - LsJ}-l-= -~- F (a t)da+-
dblOt I +D E' 0 1, t

(21 )

where C2 = Cl -IBCl/va. Under displacement-controlled loading, the crack growth
becomes unbounded when the quantity inside the braces on the right side of (21) vanishes.

The stability condition expressed by (21), as well as broad conclusions which can be
deduced from it, is reminiscent of I-based tearing stability models developed by Paris and
co-workers (1979), but with several important differences. First, the roles of increasing
strength (ro/E) and specimen length (Ljt) in destabilizing cracking are evident in (21), as
is the stabilizing role of increasing ductility through CTOA. The strength effect may be
either intrinsic (ry) or elevated by prior strain hardening in the ligament (ro). The role of
relative crack depth a/t in affecting stability is more complex, since it directly influences C2

and D through the size (C l ) and shape of the yield surface at remote tension. When M = 0,
Il = a/I and the MGH yield surface (7) is applicable for al21 ~ 0.6, or a/t ~ 0.55. In this
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Fig. 15. (a) Reaction force vs relative crack depth a/t of SEC specimens with ao/t = 0.4 and 0.6
under pure extension. (b) Reaction moment vs relative crack depth a/t of SEC specimens with

ao/t = 0.4 and 0.6 under pure extension.

regime, L 2 = I and the negative term D monotonically decreases with a/t to - I at a/t -+ I,
while C2 monotonically decreases to zero as a/t -+ I. Thus, as alt -+ I and the ligament
comes to be loaded in predominant bending, there is (ultimately) strong tendency for stable
cracking in tension, as seen in Figs 9, 10, 12 and 13, notwithstanding the possibility of early
instability. The terminal stability of the bending solutions in Figs II and 14(b) is similarly
consistent with (21), although a separate analysis of (pure) bending analogous to that
leading to (21) would be more revealing. A further complexity of the present model lies in
the possible variability of CTOA. For example, in remote pure tension, if initial crack
depth lies in ~0.35 ~ ao/t ~ 0.55, then increasing crack length in this interval results in a
progressively decreasing CTOA.

For the limiting case of rigid-plastic, nonhardening materials, Kim (1993) presented a
plane strain, fully plastic crack growth line-spring model. With large-geometry change of
elastic surroundings included, their model effectively accounts for the bulging response of
a cracked part. Bulging causes the line of action of applied load to shift relative to the plate
centerline and produces less bending moment on the ligament. The effect of bulging is more
pronounced for tension oflong specimens under pinned boundary conditions, where remote
applied mid-specimen moment is zero. Our line-spring model formulated on small geometry
change does not describe such bulging behavior. However, unlike the through-crack in a
2-D SEC specimen, finite length surface cracks embedded in plates/shells experience more
severe geometrical resistance to bulging from their elastic surroundings. Accordingly, the
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Fig. 16. Normalized axial force F/(2nRm ' 2r,1o) vs loading·point total displacement {jtot//o of axi
symmetrically cracked pipes under uniaxial tension for various Rm/t ratios. (a) n ;; 00. (b) n == 10.
(c) Effect of material ductility on normalized axial force vs loading-point total displacement curve
of axisymmetrically cracked pipes under uniaxial tension. (d) Effect of shell curvature on the system
stabilization. In contrast to the plane strain case (Rm --+ (0) of Fig. 8(a), there is no influence of shell

length on the shape of load-defle,~tioncurve.

bulging effect is expected to be less important in surface crack problems presented in Part
II (Lee and Parks, 1998). In any event, since bulging plays the beneficial role of relieving
the crack-tip constraint (fl decreases, hence CTOA increases), a crack growth simulation
based on small-geometry change analyses can be regarded as conservative.

When a crack advances through elastic/perfectly-plastic material under plane strain
mode I small-scale yielding, the crack-tip strain singularity is weaker than that of the
stationary crack (Rice, 1975). The strain field at the growing crack-tip is not thoroughly
refocused because of crack extension into the plastically deformed material. This reduced
crack-tip strain concentration is the main source of stable crack growth. Our present fully
plastic analyses of crack growth assume that the deformation fields of growing cracks are
incrementally identical to those ofa stationary crack. This assumption seems to overestimate
the strain singularity at the fully plastic growing crack-tip, when judged qualitatively by
comparing strain singularities at the tips of stationary and growing cracks under SSY
condition.

Our line-spring treatment of fully plastic hardening of material during ductile crack
growth, though plausible, merits further study. As the crack-tip advances, the hardened
material convects out from, and fresh material enters into, the active plastic region. Since
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Fig. 16.-Continued.

our current line-spring model does not directly account for this convection out of hardened
material, we expect that the model overestimates the ligament-average hardness in the
active plastic region. Moreover, hardening is spatially nonuniform in the ligament, with
highest flow strength near the tip. In the continuum, for example, this forces higher bending
moments and triaxiality under pure extension (lung, 1995).

6. SUMMARY

In this study, we presented a line-spring model which can simulate the crack growth
of plane strain SEC specimens as well as surface cracks in plate/shell structures under fully
plastic plane strain condition. CTOA is treated as a material-dependent function of the stress
and deformation imposed on the growing crack-tip region. We approximately evaluated the
CTOA in terms of loads within line-spring finite elements, by integrating the sliding-off and
cracking model of McClintock et al. (1995), and the least upper bound method of Kim et
al. (I 996a). Upon determining the constraint-dependent CTOA and the loading-imposed
increment of CTOD, we kinematically calculate the increment of crack extension.

Parametric studies were performed on 2-D plane strain SEC specimens. The increase
of generalized force after crack initiation depends on the loading type and material hard
ening. The increase of reaction force of a short SEC specimen under pure extension comes
from the strain hardening, and the drift of load state towards the vertex of the yield surface.
The crack in the longer specimen grows faster (per unit imposed deformation) than that in
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the shorter specimen for pure extension, while a reversal occurs for remote pure tension.
Hardening material naturally provides a larger maximum reaction force/moment than
nonhardening material. Retardation of crack initiation, longer specimen length, higher
yield strength, lower ductility and an initially shorter crack, each tends to make the crack of
SEC specimens grow more unstably. In a tensile-loaded pipe with a complete circumferential
crack, the curvature of the shell tends to stabilize the system. Stability of fully plastic plane
strain cracking of SEC specimen under remote pure tension was discussed in terms of line
spring system characteristics.
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